

La minéralisation osseuse et la qualité osseuse

Prof P. Ammann

Service des maladies osseuses Département des spécialitées de médecine

Séminaire "Minéralisation osseuse" Lyon 26 Mai 2016

Rats Model

Human

LUMBAR SPINE Ultimate force , N*1000 10 350 Δ 0 Maximal Load (N) 250 $\mathbf{\Delta}$ 5 <u>ovx</u> OVX + IGF-I 150 OVX + APD OVX + IGF-I + APD r2 = 0.623, p<0.0001 **5**0 0.27 0_21 0.23 0.25 0 BMD (g/cm2) 0 1 2 3 4 Bone mineral g/cm2

Ammann, Rizzoli, Meyer, Bonjour.Osteoporos Int. 1996;6:219-27.

Bone mass predicts 60-75% of bone strength variance

Mineralized Collagen Fibrils basic building block of bone

SE-image of ruptured bone

Degree of Mineralisation of Bone

The degree of mineralisation of bone is inversely related to bone turnover

Primary mineralisation:

mineralisation during bone remodelling cycle (few days, up to 70%)

Secondary mineralisation:

slow and gradual maturation of mineral and increase in its amour (months/year scale)

Biomechanics: Load Deflection Curve

Ammann, Rizzoli. Osteoporos Int. 2003;14 Suppl 3:S13-8.

Instrument of nano-indentation

Principle

Ammann, Hengsberger, Legros, Rizzoli, Zysset. Bone. 2005;36(1):134-41.

R²=0.0014

250

Stiffness vs Modulus

Ultimate strength vs hardness

Energy vs dissipated energy

Ammann, Hengsberger, Legros, Rizzoli, Zysset. Bone. 2005;36(1):134-41.

Dry Conditions	Control	Strontium ranelate 900 mg/kg/d
Modulus	19.35 ± 0.39	19.33 ± 0.40
Hardness	849 ± 21	887 ± 21
Working Energy	5318 ± 149	5254 ± 173
Physiological	Control	Strontium ranelate 900 mg/kg/d
Modulus	12.37 ± 0.34	14.24 ± 0.37 *
Hardness	457 ± 18	510 ± 19 *
Dissipated Energy	4142 ± 146	4677 ± 160 *

Ammann, Badoud, Barraud, Dayer, Rizzoli. J Bone Miner Res. 2007 Sep;22(9):1419-25.

Ammann, Hengsberger , Legros , Rizzoli , Zysset . Bone. 2005;36(1):134-41.

Stepwise regression: Ultimate Strength

Parameter introduced

Prediction of bone strength variance

Bone MassBMD60 %Bone MaterialElasticity71 %Level PropertiesHardness95 %

Ammann, Hengsberger, Legros, Rizzoli, Zysset. Bone. 2005;36(1):134-41.

FE analysis integrating two important determinants of bone strength bone microarchitecture and intrinsic tissue quality.

• Bone microarchitecture and intrinsic tissue quality can explain independently bone strength

- When augmented intrinsic tissue quality was taken into account in the FE models,
 - the stiffness was estimated to be
 - the failure load was estimated to be

+31% (compared to +22%)

+48% (compared to +29%).

SK Boyd, E Szabo, P. Ammann (BONE 2011)

Effects of anticatabolic and anabolic agents on determinants of bone strength

T Brennan, R Rizzoli, P Ammann JBMR 2009

Bone <u>Mineralization</u>

Meunier and Boivin, 1997

Effects of anticatabolic and anabolic agents on determinants of bone strength

T Brennan, R Rizzoli, P Ammann JBMR 2009

Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women

Boivin, Chavassieux, Santora, Yates, Meunier Bone 2000

Effects of anticatabolic and anabolic agents on determinants of bone strength

T Brennan, R Rizzoli, P Ammann JBMR 2009

Effects of anticatabolic and anabolic agents on determinants of bone strength

Ovariectomized rats SR **Teriparatid** Controls Pamidronate Raloxifen MAXIMAL LOAD **BONE MASS & MICRO-ARCHITECTURE BONE MATERIAL** QUALITY **BONE TURNOVER**

T Brennan, R Rizzoli, P Ammann JBMR 2009

Strontium Integration in cortical and trabecular Bone : Human and Rat Biopsies

STRATOS Study, transiliac biopsies obtained in Women treated with SR 2g/Day for 2 years.

F. Bussy UNIL P. Ammann UNIGE

Boivin et al. 2003

Effects of strontium ranelate on bone strength of the vertebra

E 018 ± 7.9 $157.3 \pm 15.0^*$ E elastic 68.9 ± 5.9 86.6 ± 10.1 E plastic 30.0 ± 3.3 $70.7 \pm 10.0^{**}$ Yield 242.3 ± 10.1 274.4 ± 17.0	E 018 ± 7.9 $157.3\pm15.0^{\circ}$ E elastic 68.9 ± 5.9 86.6 ± 10.1 E plastic 30.0 ± 3.3 $70.7\pm10.0^{*}$ Yield 242.3 ± 10.1 274.4 ± 17.0
E elastic 68.9±5.9 86.6±10.1 E plastic 30.0±3.3 70.7±10.0** Yield 242.3±10.1 274.4±17.0	E elastic 68.9±5.9 86.6±10.1 E plastic 30.0±3.3 70.7±10.0** Yield 242.3±10.1 274.4±17.0
plastic 30.0±3.3 70.7±10.0** ield 242.3±10.1 274.4±17.0	plastic 30.0±3.3 70.7±10.0** íield 242.3±10.1 274.4±17.0
Tield 242.3±10.1 274.4±17.0	Tield 242.3±10.1 274.4±17.0

Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R. J Bone Miner Res. 2004;19(12):2012-20.

Improvement of intrinsic bone tissue quality und Strontium Ranelate treatment : Trabecular Bone

	Sham	OVX	OVX RS 125	OVX RS 250	OVX RS 625
Modulus	14.07±0.38	13.23±0.38	14.40±0.51	15.33±0.44	14.35±0.48
Hardness	562±27	487±23°	590±28*	660±25*°	566±21*
Working Energy	3268±135	3069±175	3596±110*	3634±70*°	3508±103*

Ammann, Badoud, Barraud, Dayer, Rizzoli. J Bone Miner Res. 2007 Sep;22(9):1419-25.

Ex vivo Sr exposure

NaCl — 1M SrCl2

M. Cattani, R. Rizzoli, P. Ammann, Acta biomaterialia 2013

NaCl 0.5M 1M 2M Sr

NaCl 0.5M 1M 2M Ca

Ва

Bone with Cracks and Microcracks

Larrue, Rattner, Peter, Olivier, Vico; Peyrin PLoS One 2011

Dry Conditions	Control	Strontium ranelate 900 mg/kg/d
Modulus	19.35 ± 0.39	19.33 ± 0.40
Hardness	849 ± 21	887 ± 21
Working Energy	5318 ± 149	5254 ± 173
Physiological	Control	Strontium ranelate
		900 mg/kg/d
Modulus	12.37 ± 0.34	900 mg/kg/d 14.24 ± 0.37 *
Modulus Hardness	12.37 ± 0.34 457 ± 18	900 mg/kg/d 14.24 ± 0.37 * 510 ± 19 *

Ammann, Badoud, Barraud, Dayer, Rizzoli. J Bone Miner Res. 2007 Sep;22(9):1419-25.

« Sacrificial bonds »

а

Fantner et al. (2006)

Effect of low protein intake and over expression of IGF-I in bone Nano Indentation of Vertebra

Effect of low protein intake and over expression of IGF-I in bone Nano Indentation of Vertebra

Brennan-Speranza, Rizzoli, Kream, Rosen, Ammann; Bone. 2011;49:1073-9.

Effects of anticatabolic and anabolic agents on determinants of bone strength

T Brennan, R Rizzoli, P Ammann JBMR 2009

Hôpitaux Universitaires Genève

